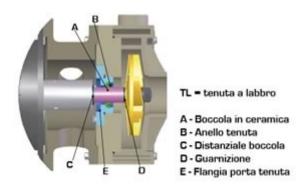

Pompa ad anello liquido

L'elemento rotante è costituito dal una girante dotata di pale radiali montata eccentricamente (non in asse) rispetto alla cassa circolare. La cassa contiene due porte, una di aspirazione e una di mandata sulle superfici frontali.

Principio di funzionamento:


- -quando si aziona la pompa, la forza centrifuga crea l'anello liquido (acqua);
- -la variazione di volume che si innesca tra le due pale e l'anello di liquido crea dapprima una depressione (aspirazione) ed in seguito una compressione (mandata). E' di fatto una pompa volumetrica poiché il suo funzionamento si basa sulla variazione di volumi.

Tenuta

Apparecchiatura atta ad isolare due ambienti, tra i quali vi sia un albero dotato di moto circolare, utilizzata quando non si deve verificare perdite di liquido.

Tenuta a labbro (due anelli di gomma in materiale polimerico)

CAVITAZIONE

Definizione: formazione di microbolle di vapore in seno al fluido che scorre all'interno dei canali interpalari delle pompe centrifughe.

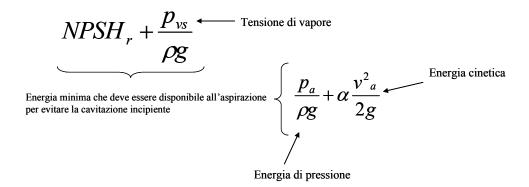
Causa: diminuzione locale della pressione fino ad un valore pari o inferiore alla tensione di vapore del liquido corrispondente alla temperatura del liquido stesso.

Il raggiungimento di pressioni pari o inferiori alla tensione di vapore nel primo tratto dei canali intercalari è dovuto alla trasformazione dell'energia del fluido alla bocca d'aspirazione in:

- perdite di carico nel tratto bocca d'aspirazione- ingresso della girante
- energia cinetica all'ingresso della girante
- nell'azione idrodinamica delle pale che produce accelerazioni a discapito della pressione.

E' un fenomeno da evitare per le seguenti ragioni:

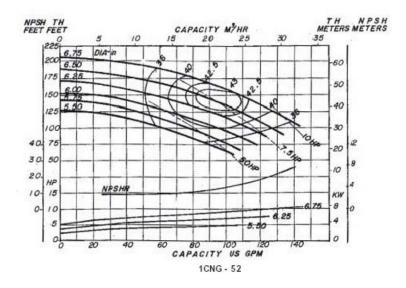
- diminuzione della pressione P_p espressa dalla pompa
- la comparsa delle bolle di vapore è seguita dalla loro scomparsa (implosione→ onde di pressione del valore anche di 8000 bar che impattano sulle pale) mano a mano che vengono trascinate verso l'uscita del canale interpalare.


Risultato:

Energia netta all'aspirazione richiesta dalla pompa (funzione del disegno della girante) →

Perdite di carico nel tratto bocca d'aspirazione-ingresso girante + energia cinetica all'ingresso della girante + perdita di pressione in relazione alle accelerazioni provocate dall'azione idrodinamica delle pale.

 $\underline{I \ costruttori \ la \ forniscono \ per \ unità \ di \ peso} \rightarrow altezza \ netta \ all'aspirazione richiesta \ NPSHr (Net Positive Suction Head).$



Cavitazione incipiente → quando la pressione locale si limita a raggiungere la tensione di vapore. Per verificarsi (la caviazione) occorre andare al di sotto della tensione di vapore.

$$NPSH_r + \frac{p_{vs}}{\rho g} = \frac{p_a}{\rho g} + \alpha \frac{v_a^2}{2g} \rightarrow E'$$
 l'energia (altezza) all'aspirazione al netto della tensione di vapore. $NPSH_r \rightarrow$ energia netta perché al netto della tensione di vapore

Valori tipici: 0.5-1.5 m (per le pompe con le migliore profilature della girante, 4-5 m per quelle più semplici.

NPSH_r è funzione della portata Q

Influenza del circuito di aspirazione → dislivello ammesso tra pompa e serbatoio di aspirazione

Applichiamo l'equazione di Bernoulli tra il pelo libero (*l*) del serbatoio e il punto di aspirazione (*a*) della pompa

$$\alpha \frac{v_a^2}{2g} + \frac{p_l}{\rho g} + h_l = \alpha \frac{v_a^2}{2g} + \frac{p_a}{\rho g} + h_a + h_R$$

$$P_l = p_{atm}$$

$$V_l = 0$$

$$(h_l - h_a) = -y_a$$

$$\alpha \frac{v_a^2}{2g} + \frac{p_a}{\rho g} = \frac{p_{atm}}{\rho g} - y_a - h_R$$

L'energia disponibile all'aspirazione è l'energia di pressione atmosferica al netto del dislivello e delle perdite di carico Distivello massimo consentito per avere la cavitazione incipiente $y_a = \frac{p_{atm}}{\rho g} - h_R - NPSH_r - \frac{p_{vs}}{\rho g}$